

KS4 Science / Additional Science

Physics

Motion & Force: Speed, Velocity & Acceleration

Motion & Force at Robin Hill

Describing force and motion at the park!

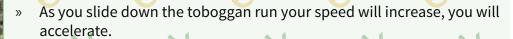
Student Introduction

- ▶ Motion, acceleration and velocity can be measured all around Robin Hill Country Park!
- What can you discover about your own and others' velocity and acceleration capabilities?

TASK₄

Enjoy the different activities at Robin Hill.

Complete the tasks on the following pages.


ACCELE DATIONI

Teaching resources by Education Destination Ltd.

Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources

www.edudest.uk

Dackground

- Acceleration is the rate at which you change speed.
- To calculate acceleration you use the formula:

Acceleration (m/s^2) = change in velocity (m/s) ÷ time taken for the change (s)

Practise your calculations.

Chris was stationary at the top of the toboggan run.

, dudes

- His velocity at the end of the toboggan run was 8 m/s
- » It took Chris 40 seconds to travel down the toboggan run from the top of the hill

What was his acceleration?

acceleration (m/s^2) = change in velocity (m/s) ÷ time taken for the change (s) $acceleration = 8 \div 40$

acceleration = 0.2 m/s²

It took Jessie 30 seconds to travel down the toboggan run. She was stationary at the top of the toboggan run and her velocity was 10 m/s at the end. edudesti edudesti edudest. Calculate her acceleration. edudest

STEP

The table below shows information about some of the activities found at Robin Hill. Use this information to calculate the acceleration of the different objects

	Activity	Velocity at start (m/s)	Velocity at end (m/s)	Time taken (s)	Accelerati	Calculation: on = <u>change in</u> time taken f		Acceleration m/s ²
-	Colossus	0	15	5	gino	egne	dil	ding
	Cows Express Children's Train Ride	0	3	60	X	.\ <u></u>	N	

Teaching resources by Education Destination Ltd.

Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources

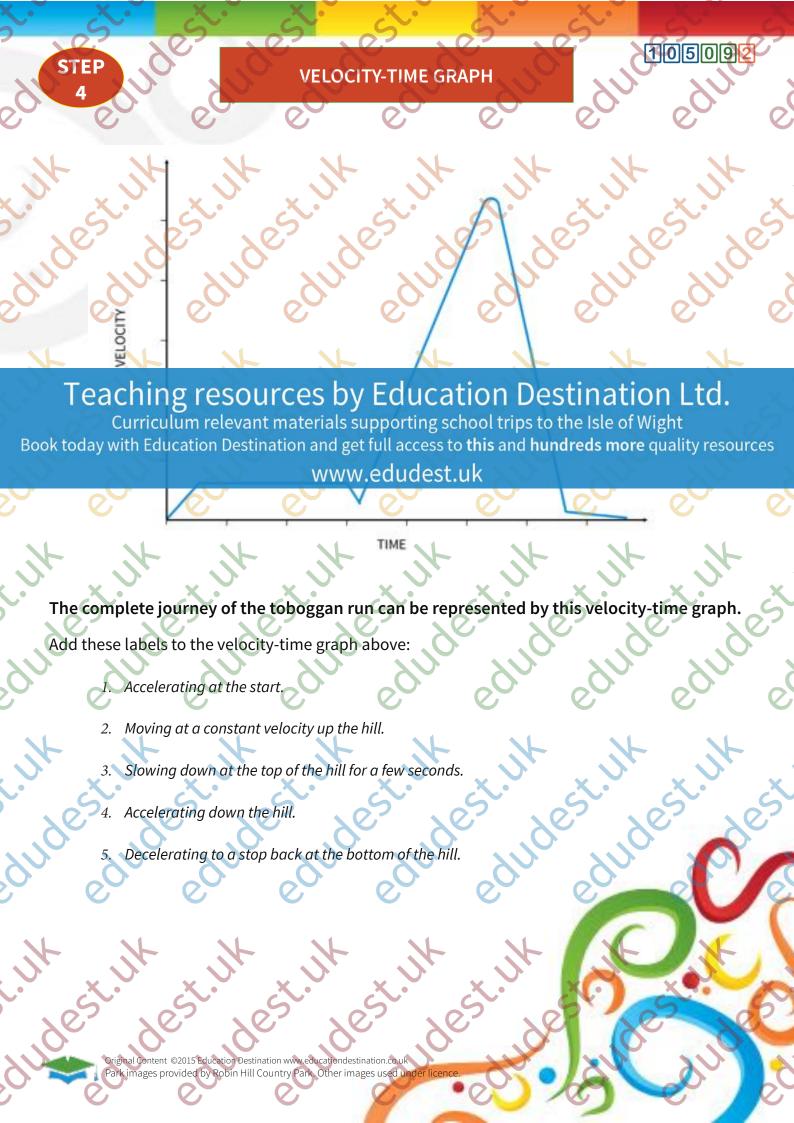
	Pitch & Putt		4 N	/ww.ec	ludest	.uk		
	Cheetah Zip Wire	0	8	4	\ \ \	e V	e \	
-	Falconry Display	0.5	86	1		osk.VII	ost.VII	SK.JI

STEP

You can change the formula around to find a different value:

edudest.III

edudest.III


Time taken for change = change in velocity ÷ acceleration

The toboggan was stationary at the top of the hill and reached a maximum velocity of 15 m/s. The acceleration for this toboggan ride was 0.5 m/s²

edudest.III

edudestul

What would be the time taken to travel down the toboggan run? Show your working out. Don't forget to include the units.

